For the latest updates, visit Prof. Burdyny's page on Google Scholar
2021
27. Role of the Carbon-Based Gas Diffusion Layer on Flooding in a Gas Diffusion Electrode Cell for Electrochemical CO2 Reduction
K Yang, R Kas, WA Smith, T Burdyny, ACS Energy Letters, 6, 1, 33-40 (2021)
2020
26. Liquid-solid boundaries dominate activity of CO2 reduction on gas-diffusion electrode
NT Nesbitt, T Burdyny, H Simonson, D Salvatore, D Bohra, R Kas, WA Smith, ACS Catalysis, 10, 14093–14106 (2020)
25. Microbial Electrosynthesis: Where do we go from here?
L Jourdin, T Burdyny, Trends in Biotechnology, Accepted (2020)
24. Copper and silver gas diffusion electrodes performing CO2 reduction studied through operando X-ray absorption spectroscopy
NJ Firet, T Burdyny, NT Nesbitt, S Chandrashekar, A Longo, WA Smith, Catal. Sci. Technol, 10, 5870-5885, (2020)
23. Facet-Dependent Selectivity of Cu Catalysts in Electrochemical CO2 Reduction at Commercially-viable Current Densities
GL de Gregorio, T Burdyny, A Loiudice, P Iyengar, WA Smith, R Buonsanti, ACS Catalysis, 10, 4854-4862 (2020)
Selected as an 'ACS Editor's Choice' article, providing Open Access sponsored by ACS
22. Electrochemical CO2 Reduction on Nanostructured Metal Electrodes: Fact of Defect?
R Kas, K Yang, D Bohra, R Kortlever, T Burdyny, WA Smith, Chemical Science, 11, 1738-1749 (2020)
2019
21. Modeling the electrical double layer to understand the reaction environment in a CO2 electrocatalytic system
D Bohra, JH Chaudhry, T Burdyny, EA Pidko, WA Smith, Energy & Environmental Science, 12, 3380-3389 (2019)
20. Pathways to Industrial-Scale Fuel Out of Thin Air from CO2 Electrolysis
WA Smith, T Burdyny, DA Vermaas, H Geerlings, Joule, 8, 1822-1834 (2019)
19. Introductory Guide to Assembling and Operating Gas Diffusion Electrodes for Electrochemical CO2 Reduction.
K Liu, WA Smith, T Burdyny, ACS energy letters, 4 (3), 639-643 (2019)
18. CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions.
T Burdyny, WA Smith, Energy and Environmental Science, 12, 1442-1453 (2019)
Selected as a 'HOT Article' for both 2018 and 2019 by the editors and referees. Artwork featured on the front cover.
17. Operando EXAFS study reveals presence of oxygen in oxide-derived silver catalysts for electrochemical CO2 reduction.
NJ Firet, MA Blommaert, T Burdyny, A Venugopal, D Bohra, A Longo, WA Smith, Journal of Materials Chemistry A, 7, 2597-2607 (2019)
2018
16. Copper adparticle enabled selective electrosynthesis of n-propanol.
J Li, FL Che, Y Pang, C Zou, J Howe, T Burdyny, JP Edwards, Y Wang, F Li, P de Luna, CT Dinh, T Zhuang, M Saidaminov, S Cheng, T Wu, Y Finfrock, L Ma, SH Hsieh, YS Liu, G Botton, WF Pong, X Du, J Guo, TS Sham, D Sinton, EH Sargent, Nature Communications, 9, 4614 (2018)
15. Copper nanocavities confine intermediates for efficient electrosynthesis of C3 alcohol fuels from carbon monoxide.
T Zhuang, Y Pang, Z Liang, Z Wang, Y Li, C Tan, J Li, CT Dinh, P de Luna, P Hsieh, T Burdyny, H Li, M Liu, Y Wang, F Li, A Proppe, A Johnston, DH Nam, Z Wu, Y Zheng, A Ip, H Tan, L Chen, SH Yu, S Kelley, D Sinton, EH Sargent, Nature Catalysis, 1, 946–951 (2018)
14. A Surface Reconstruction Route to High Productivity and Selectivity in CO2 Electroreduction Toward C2+ Hydrocarbons.
MG Kibria, CT Dinh, A Seifitokaldani, P de Luna, T Burdyny, R Quintero-Bermudez, MB Ross, O Bushuyev, FP García de Arquer, P Yang, D Sinton, EH Sargent, Advanced Materials, 49, 1804867 (2018)
13. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface.
CT Dinh*, T Burdyny*, MG Kibria*, A Seifitokaldani*, CM Gabardo, FP García de Arquer, A Kiani, JP Edwards, P de Luna, O Bushuyev, C Zou, R Quintero-Bermudez, Y Pang, D Sinton, EH Sargent, Science, 360, 783-787 (2018)
12. Combined high alkalinity and pressurization achieve efficient CO2 electroreduction to CO.
CM Gabardo*, A Seifitokaldani*, JP Edwards*, CT Dinh, T Burdyny, MG Kibria, EH Sargent, D Sinton, Energy and Environmental Science, 7, 2531-2539 (2018)
11. Steering post-C-C coupling selectivity enables high-efficiency electroreduction of carbon dioxide to multi-carbon alcohols.
T Zhuang*, Z Liang*, A Seifitokaldani*, Y Li, P de Luna, T Burdyny, F Meng, R Quintero-Bermudez, CT Dinh, M Liu, M Zhong, F Che, B Zhang, J Li, P Chen, X Zheng, HY Liang, WN Ge, B Ye, D Sinton, S Yu, EH Sargent, Nature Catalysis, 1, 421–428 (2018)
10. Hydronium-Induced Switching Between CO2 Electroreduction Pathways.
A Seifitokaldani*, CM Gabardo*, T Burdyny, CT Dinh, JP Edwards, MG Kibria, O Bushuyev, S Kelley, D Sinton, EH Sargent, Journal of the American Chemical Society, 140, 3833–3837 (2018)
9. Low pressure supercritical CO2 extraction of astaxanthin from Haematococcus pluvialis demonstrated on a microfluidic chip.
X Cheng, ZB Qi, T Burdyny, T Kong, D Sinton, Bioresource Technology, 250, 481-485 (2018)
2017
8. Joint Tuning of Nanostructured Cu Oxide Morphology and Local Electrolyte Programs High-Rate CO2 Reduction to C2H4.
Y Pang*, T Burdyny*, CT Dinh, MG Kibria, O Voznyy, J Fan, M Liu, EH Sargent, D Sinton, Green Chemistry, 19, 4023 – 4030 (2017)
7. Nanomorphology-enhanced gas-evolution intensifies CO2 reduction electrochemistry.
T Burdyny, PJ Graham, Y Pang, CT Dinh, M Liu, EH Sargent, D Sinton, ACS Sustainable Chemistry and Engineering, 5, 4031 – 4040 (2017)
6. A penalty on photosynthetic growth in fluctuating light.
PJ Graham, B Nguyen, T Burdyny, D Sinton, Scientific Reports, 7, 12513 (2017)
2010 - 2016
5. Self-assembled nanoparticle-stabilized photocatalytic reactors.
T Burdyny, J Riordon, EH Sargent, D Sinton, Nanoscale, 8, 2107 – 2115 (2016)
4. AMR thermodynamics: Semi-analytical modeling.
T Burdyny, DS Arnold, A Rowe, Cryogenics, 62, 177 – 184 (2014)
3. Performance modeling of AMR refrigerators.
T Burdyny, A Ruebsaat-Trott, A Rowe, International Journal of Refrigeration, 37, 51 – 62 (2013)
2. Simplified modeling of active magnetic regenerators.
T Burdyny, A Rowe, International Journal of Refrigeration, 36, 932 – 940 (2012)
1. Hybrid membrane/cryogenic separation of oxygen from air for use in the oxy-fuel process.
T Burdyny, H Struchtrup, Energy Journal, 35, 1884 – 1897 (2010)Catal. Sci. Technol., 2020,10, 5870-5885
27. Role of the Carbon-Based Gas Diffusion Layer on Flooding in a Gas Diffusion Electrode Cell for Electrochemical CO2 Reduction
K Yang, R Kas, WA Smith, T Burdyny, ACS Energy Letters, 6, 1, 33-40 (2021)
2020
26. Liquid-solid boundaries dominate activity of CO2 reduction on gas-diffusion electrode
NT Nesbitt, T Burdyny, H Simonson, D Salvatore, D Bohra, R Kas, WA Smith, ACS Catalysis, 10, 14093–14106 (2020)
25. Microbial Electrosynthesis: Where do we go from here?
L Jourdin, T Burdyny, Trends in Biotechnology, Accepted (2020)
24. Copper and silver gas diffusion electrodes performing CO2 reduction studied through operando X-ray absorption spectroscopy
NJ Firet, T Burdyny, NT Nesbitt, S Chandrashekar, A Longo, WA Smith, Catal. Sci. Technol, 10, 5870-5885, (2020)
23. Facet-Dependent Selectivity of Cu Catalysts in Electrochemical CO2 Reduction at Commercially-viable Current Densities
GL de Gregorio, T Burdyny, A Loiudice, P Iyengar, WA Smith, R Buonsanti, ACS Catalysis, 10, 4854-4862 (2020)
Selected as an 'ACS Editor's Choice' article, providing Open Access sponsored by ACS
22. Electrochemical CO2 Reduction on Nanostructured Metal Electrodes: Fact of Defect?
R Kas, K Yang, D Bohra, R Kortlever, T Burdyny, WA Smith, Chemical Science, 11, 1738-1749 (2020)
2019
21. Modeling the electrical double layer to understand the reaction environment in a CO2 electrocatalytic system
D Bohra, JH Chaudhry, T Burdyny, EA Pidko, WA Smith, Energy & Environmental Science, 12, 3380-3389 (2019)
20. Pathways to Industrial-Scale Fuel Out of Thin Air from CO2 Electrolysis
WA Smith, T Burdyny, DA Vermaas, H Geerlings, Joule, 8, 1822-1834 (2019)
19. Introductory Guide to Assembling and Operating Gas Diffusion Electrodes for Electrochemical CO2 Reduction.
K Liu, WA Smith, T Burdyny, ACS energy letters, 4 (3), 639-643 (2019)
18. CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions.
T Burdyny, WA Smith, Energy and Environmental Science, 12, 1442-1453 (2019)
Selected as a 'HOT Article' for both 2018 and 2019 by the editors and referees. Artwork featured on the front cover.
17. Operando EXAFS study reveals presence of oxygen in oxide-derived silver catalysts for electrochemical CO2 reduction.
NJ Firet, MA Blommaert, T Burdyny, A Venugopal, D Bohra, A Longo, WA Smith, Journal of Materials Chemistry A, 7, 2597-2607 (2019)
2018
16. Copper adparticle enabled selective electrosynthesis of n-propanol.
J Li, FL Che, Y Pang, C Zou, J Howe, T Burdyny, JP Edwards, Y Wang, F Li, P de Luna, CT Dinh, T Zhuang, M Saidaminov, S Cheng, T Wu, Y Finfrock, L Ma, SH Hsieh, YS Liu, G Botton, WF Pong, X Du, J Guo, TS Sham, D Sinton, EH Sargent, Nature Communications, 9, 4614 (2018)
15. Copper nanocavities confine intermediates for efficient electrosynthesis of C3 alcohol fuels from carbon monoxide.
T Zhuang, Y Pang, Z Liang, Z Wang, Y Li, C Tan, J Li, CT Dinh, P de Luna, P Hsieh, T Burdyny, H Li, M Liu, Y Wang, F Li, A Proppe, A Johnston, DH Nam, Z Wu, Y Zheng, A Ip, H Tan, L Chen, SH Yu, S Kelley, D Sinton, EH Sargent, Nature Catalysis, 1, 946–951 (2018)
14. A Surface Reconstruction Route to High Productivity and Selectivity in CO2 Electroreduction Toward C2+ Hydrocarbons.
MG Kibria, CT Dinh, A Seifitokaldani, P de Luna, T Burdyny, R Quintero-Bermudez, MB Ross, O Bushuyev, FP García de Arquer, P Yang, D Sinton, EH Sargent, Advanced Materials, 49, 1804867 (2018)
13. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface.
CT Dinh*, T Burdyny*, MG Kibria*, A Seifitokaldani*, CM Gabardo, FP García de Arquer, A Kiani, JP Edwards, P de Luna, O Bushuyev, C Zou, R Quintero-Bermudez, Y Pang, D Sinton, EH Sargent, Science, 360, 783-787 (2018)
12. Combined high alkalinity and pressurization achieve efficient CO2 electroreduction to CO.
CM Gabardo*, A Seifitokaldani*, JP Edwards*, CT Dinh, T Burdyny, MG Kibria, EH Sargent, D Sinton, Energy and Environmental Science, 7, 2531-2539 (2018)
11. Steering post-C-C coupling selectivity enables high-efficiency electroreduction of carbon dioxide to multi-carbon alcohols.
T Zhuang*, Z Liang*, A Seifitokaldani*, Y Li, P de Luna, T Burdyny, F Meng, R Quintero-Bermudez, CT Dinh, M Liu, M Zhong, F Che, B Zhang, J Li, P Chen, X Zheng, HY Liang, WN Ge, B Ye, D Sinton, S Yu, EH Sargent, Nature Catalysis, 1, 421–428 (2018)
10. Hydronium-Induced Switching Between CO2 Electroreduction Pathways.
A Seifitokaldani*, CM Gabardo*, T Burdyny, CT Dinh, JP Edwards, MG Kibria, O Bushuyev, S Kelley, D Sinton, EH Sargent, Journal of the American Chemical Society, 140, 3833–3837 (2018)
9. Low pressure supercritical CO2 extraction of astaxanthin from Haematococcus pluvialis demonstrated on a microfluidic chip.
X Cheng, ZB Qi, T Burdyny, T Kong, D Sinton, Bioresource Technology, 250, 481-485 (2018)
2017
8. Joint Tuning of Nanostructured Cu Oxide Morphology and Local Electrolyte Programs High-Rate CO2 Reduction to C2H4.
Y Pang*, T Burdyny*, CT Dinh, MG Kibria, O Voznyy, J Fan, M Liu, EH Sargent, D Sinton, Green Chemistry, 19, 4023 – 4030 (2017)
7. Nanomorphology-enhanced gas-evolution intensifies CO2 reduction electrochemistry.
T Burdyny, PJ Graham, Y Pang, CT Dinh, M Liu, EH Sargent, D Sinton, ACS Sustainable Chemistry and Engineering, 5, 4031 – 4040 (2017)
6. A penalty on photosynthetic growth in fluctuating light.
PJ Graham, B Nguyen, T Burdyny, D Sinton, Scientific Reports, 7, 12513 (2017)
2010 - 2016
5. Self-assembled nanoparticle-stabilized photocatalytic reactors.
T Burdyny, J Riordon, EH Sargent, D Sinton, Nanoscale, 8, 2107 – 2115 (2016)
4. AMR thermodynamics: Semi-analytical modeling.
T Burdyny, DS Arnold, A Rowe, Cryogenics, 62, 177 – 184 (2014)
3. Performance modeling of AMR refrigerators.
T Burdyny, A Ruebsaat-Trott, A Rowe, International Journal of Refrigeration, 37, 51 – 62 (2013)
2. Simplified modeling of active magnetic regenerators.
T Burdyny, A Rowe, International Journal of Refrigeration, 36, 932 – 940 (2012)
1. Hybrid membrane/cryogenic separation of oxygen from air for use in the oxy-fuel process.
T Burdyny, H Struchtrup, Energy Journal, 35, 1884 – 1897 (2010)Catal. Sci. Technol., 2020,10, 5870-5885